rtc is synchronized with compile time. start pub sub approach to share time

This commit is contained in:
Philipp_EndevourOS 2025-08-02 00:39:48 +02:00
parent 5950279dc4
commit 2f502e908e
3 changed files with 152 additions and 93 deletions

View File

@ -1,108 +1,164 @@
use embassy_time::{Duration, Timer};
use log::info;
use core::time;
use chrono::NaiveDate;
use ds3231::{
Alarm1Config, Config, DS3231, DS3231Error, InterruptControl, Oscillator, Seconds,
SquareWaveFrequency, TimeRepresentation,
};
use embassy_time::{Duration, Timer, WithTimeout};
use esp_hal::{
Async,
i2c::{self, master::I2c},
peripherals,
};
use log::{debug, error, info};
use crate::{FEEDBACK_STATE, UTC_TIME, drivers, feedback, init};
use chrono::{NaiveDateTime, TimeZone, Utc};
include!(concat!(env!("OUT_DIR"), "/build_time.rs"));
const RTC_ADDRESS: u8 = 0x68;
#[embassy_executor::task]
pub async fn rtc_task() {
info!("RTC task started");
// Initialize I2C and RTC here
pub async fn rtc_task(
i2c: i2c::master::I2c<'static, Async>,
sqw_pin: peripherals::GPIO21<'static>,
) {
UTC_TIME.signal(BUILD_UNIX_TIME);
info!("Build time: {}", BUILD_UNIX_TIME);
// i2c.write_async(RTC_ADDRESS, &[0x0E, 0b00000000]) // Clear control register
// .await
// .unwrap_or_else(|e| {
// FEEDBACK_STATE.signal(feedback::FeedbackState::Error);
// error!("Failed to clear RTC control register: {:?}", e);
// });
// debug!("init rtc interrupt");
// let mut rtc_interrupt = init::hardware::setup_rtc_iterrupt(sqw_pin).await;
debug!("configuring rtc");
let mut rtc = drivers::rtc::rtc_config(i2c).await;
debug!("rtc up");
loop {
// Read RTC time and update UTC_TIME signal
// let utc_time = read_rtc_time(&mut rtc).await.unwrap();
// UTC_TIME.signal(utc_time);
//set_rtc_alarm(&mut rtc).await;
// debug!("Waiting for RTC interrupt...");
// rtc_interrupt.wait_for_falling_edge().await;
// debug!("RTC interrupt triggered");
// Simulate waiting for an interrupt or event
Timer::after(Duration::from_millis(1000)).await;
info!("RTC tick");
//TODO use pub sub channel or something similar to send the time when needed
let timestamp = drivers::rtc::read_rtc_time(&mut rtc).await;
match timestamp {
Ok(ts) => {
UTC_TIME.signal(ts);
info!("Current UTC time: {}", UTC_TIME.wait().await);
}
Err(e) => {
FEEDBACK_STATE.signal(feedback::FeedbackState::Error);
error!("Failed to read RTC datetime: {:?}", e);
}
}
}
}
pub async fn rtc_config(i2c: I2c<'static, Async>) -> DS3231<I2c<'static, Async>> {
let mut rtc: DS3231<I2c<'static, Async>> = DS3231::new(i2c, RTC_ADDRESS);
let naive_dt = Utc
.timestamp_opt(BUILD_UNIX_TIME as i64, 0)
.single()
.unwrap()
.naive_utc();
let rtc_config = Config {
time_representation: TimeRepresentation::TwentyFourHour,
square_wave_frequency: SquareWaveFrequency::Hz1,
interrupt_control: InterruptControl::Interrupt, // Enable interrupt mode
battery_backed_square_wave: false,
oscillator_enable: Oscillator::Disabled,
};
match rtc.configure(&rtc_config).await {
Ok(_) => info!("DS3231 configured successfully"),
Err(e) => {
info!("Failed to configure DS3231: {:?}", e);
panic!("DS3231 configuration failed");
}
}
rtc.set_datetime(&naive_dt).await.unwrap_or_else(|e| {
FEEDBACK_STATE.signal(feedback::FeedbackState::Error);
error!("Failed to set RTC datetime: {:?}", e);
});
info!("RTC datetime set to: {}", naive_dt);
match rtc.status().await {
Ok(mut status) => {
status.set_alarm1_flag(false);
status.set_alarm2_flag(false);
match rtc.set_status(status).await {
Ok(_) => info!("Alarm flags cleared"),
Err(e) => info!("Failed to clear alarm flags: {:?}", e),
}
}
Err(e) => info!("Failed to read status: {:?}", e),
}
rtc
}
pub async fn read_rtc_time<'a>(
rtc: &'a mut DS3231<I2c<'static, Async>>,
) -> Result<u64, DS3231Error<esp_hal::i2c::master::Error>> {
let timestamp_result = rtc.datetime().await?;
Ok(timestamp_result.and_utc().timestamp() as u64)
}
/* ************************************************************************************** */
// use ds3231::{Alarm1Config, DS3231, DS3231Error, Seconds};
// use embassy_time::{Duration, Timer};
// use esp_hal::{
// Async,
// i2c::{self, master::I2c},
// peripherals,
// };
// use log::{debug, error, info};
// use crate::{UTC_TIME, drivers, init};
// const RTC_ADDRESS: u8 = 0x57;
// #[embassy_executor::task]
// pub async fn rtc_task(
// //i2c: i2c::master::I2c<'static, Async>,
// //sqw_pin: peripherals::GPIO21<'static>,
// ) {
// //UTC_TIME.signal(155510);
// // debug!("init rtc interrupt");
// // let mut rtc_interrupt = init::hardware::setup_rtc_iterrupt(sqw_pin).await;
// // debug!("configuring rtc");
// // let mut rtc = drivers::rtc::rtc_config(i2c).await;
// // let timestamp_result = drivers::rtc::read_rtc_time(&mut rtc).await;
// // UTC_TIME.signal(timestamp_result.unwrap());
// debug!("rtc up");
// loop {
// info!("Current UTC time: {}", UTC_TIME.wait().await);
// // debug!("Waiting for RTC interrupt...");
// // rtc_interrupt.wait_for_falling_edge().await;
// // debug!("RTC interrupt triggered");
// // let timestamp_result = drivers::rtc::read_rtc_time(&mut rtc).await;
// // UTC_TIME.signal(timestamp_result.unwrap());
// // Timer::after(Duration::from_secs(1)).await; // Debounce delay
// }
// }
// pub async fn rtc_config(i2c: I2c<'static, Async>) -> DS3231<I2c<'static, Async>> {
// let mut rtc: DS3231<I2c<'static, Async>> = DS3231::new(i2c, RTC_ADDRESS);
// let daily_alarm = Alarm1Config::AtTime {
// hours: 0, // set alarm every day 00:00:00 to sync time
// minutes: 0,
// seconds: 10,
// is_pm: None, // 24-hour mode
// };
// let naive_dt = chrono::NaiveDateTime::from_timestamp_opt(*utc_time as i64, 0)
// .expect("Invalid timestamp for NaiveDateTime");
// rtc.set_datetime(&naive_dt).await.unwrap_or_else(|e| {
// error!("Failed to set RTC datetime: {:?}", e);
// panic!();
// });
// if let Err(e) = rtc.set_alarm1(&daily_alarm).await {
// error!("Failed to configure RTC: {:?}", e);
// panic!();
// }
// rtc
// }
// pub async fn read_rtc_time<'a>(
// rtc: &'a mut DS3231<I2c<'static, Async>>,
// ) -> Result<u64, DS3231Error<esp_hal::i2c::master::Error>> {
// match rtc.datetime().await {
// Ok(datetime) => {
// let utc_time = datetime.and_utc().timestamp() as u64;
// Ok(utc_time)
// }
// Err(e) => {
// FEEDBACK_STATE.signal(feedback::FeedbackState::Error);
// error!("Failed to read RTC datetime: {:?}", e);
// Err(e)
// }
// }
// }
// let alarm_config = Alarm1Config::AtSeconds { seconds: 0};
// match rtc.set_alarm1(&alarm_config).await {
// Ok(_) => info!("Alarm 1 set to trigger at seconds"),
// Err(e) => {
// FEEDBACK_STATE.signal(feedback::FeedbackState::Error);
// error!("Failed to set Alarm 1: {:?}", e);
// }
// }
/* ************************************************************************************** */
// #[embassy_executor::task]
// pub async fn rtc_task() {
// info!("RTC task started");
// // Initialize I2C and RTC here
// loop {
// // Read RTC time and update UTC_TIME signal
// // let utc_time = read_rtc_time(&mut rtc).await.unwrap();
// // UTC_TIME.signal(utc_time);
// // Simulate waiting for an interrupt or event
// Timer::after(Duration::from_millis(1000)).await;
// info!("RTC tick");
// }
// }
// }
// TODO Update time when device is connected other device over Wifi

View File

@ -35,7 +35,15 @@ pub async fn feedback_task(buzzer: peripherals::GPIO19<'static>) {
Timer::after(Duration::from_millis(100)).await;
buzzer.set_low();
}
FeedbackState::Error => {}
FeedbackState::Error => {
buzzer.set_high();
Timer::after(Duration::from_millis(500)).await;
buzzer.set_low();
Timer::after(Duration::from_millis(500)).await;
buzzer.set_high();
Timer::after(Duration::from_millis(500)).await;
buzzer.set_low();
}
FeedbackState::Startup => {
buzzer.set_high();
Timer::after(Duration::from_millis(10)).await;

View File

@ -3,11 +3,10 @@
#![feature(type_alias_impl_trait)]
#![feature(impl_trait_in_assoc_type)]
use esp_alloc::EspHeap;
use embassy_executor::Spawner;
use embassy_net::Stack;
use embassy_sync::{
blocking_mutex::raw::{NoopRawMutex, CriticalSectionRawMutex},
blocking_mutex::raw::{CriticalSectionRawMutex, NoopRawMutex},
pubsub::{
PubSubChannel, Publisher,
WaitResult::{Lagged, Message},
@ -15,19 +14,18 @@ use embassy_sync::{
signal::Signal,
};
use embassy_time::{Duration, Timer};
use esp_alloc::EspHeap;
use log::{debug, info};
use static_cell::make_static;
use crate::{store::TallyID, webserver::start_webserver};
mod init;
mod drivers;
mod feedback;
mod init;
mod store;
mod webserver;
include!(concat!(env!("OUT_DIR"), "/build_time.rs"));
static UTC_TIME: Signal<CriticalSectionRawMutex, u64> = Signal::new();
static FEEDBACK_STATE: Signal<CriticalSectionRawMutex, feedback::FeedbackState> = Signal::new();
@ -36,7 +34,6 @@ type TallyPublisher = Publisher<'static, NoopRawMutex, TallyID, 8, 2, 1>;
#[esp_hal_embassy::main]
async fn main(mut spawner: Spawner) {
let (uart_device, stack, _i2c, sqw_pin, buzzer_gpio) =
init::hardware::hardware_init(&mut spawner).await;
@ -58,7 +55,7 @@ async fn main(mut spawner: Spawner) {
));
debug!("spawing rtc task");
spawner.must_spawn(drivers::rtc::rtc_task());
spawner.must_spawn(drivers::rtc::rtc_task(_i2c, sqw_pin));
debug!("spawing feedback task..");
spawner.must_spawn(feedback::feedback_task(buzzer_gpio));
@ -66,13 +63,11 @@ async fn main(mut spawner: Spawner) {
let mut sub = chan.subscriber().unwrap();
debug!("everythig spwawned");
debug!("everything spawned");
FEEDBACK_STATE.signal(feedback::FeedbackState::Startup);
loop {
info!("runnung in main loop");
info!("running in main loop");
Timer::after(Duration::from_millis(1000)).await;
// let wait_result = sub.next_message().await;
// match wait_result {